What is GCF of 181 and 500?


Steps to find GCF of 181 and 500

Example: Find gcf of 181 and 500

  • Factors for 181: 1, 181
  • Factors for 500: 1, 2, 4, 5, 10, 20, 25, 50, 100, 125, 250, 500

Hence, GCf of 181 and 500 is 1

What is GCF of two numbers?

In mathematics GCF or also known as greatest common factor of two or more number is that one largest number which is a factor of those given numbers. It is represented as GCF (181, 500).

Properties of GCF

  • The GCF of two or more given numbers is always less than the given numbers. Eg- GCF of 181 and 500 is 1, where 1 is less than both the numbers.
  • If the given numbers are consecutive than GCF is always 1.
  • Product of two numbers is always equal to the product of their GCF and LCM.
  • The GCF of two given numbers where one of them is a prime number is either 1 or the number itself.

How can we define factors?

In mathematics a factor is a number which divides into another without leaving any remainder. Or we can say, any two numbers that multiply to give a product are both factors of that product. It can be both positive or negative.

Properties of Factors

  • Every factor of a number is an exact divisor of that number, example 1, 181 are exact divisors of 181 and 1, 2, 4, 5, 10, 20, 25, 50, 100, 125, 250, 500 are exact divisors of 500.
  • Every number other than 1 has at least two factors, namely the number itself and 1.
  • Each number is a factor of itself. Eg. 181 and 500 are factors of themselves respectively.
  • 1 is a factor of every number. Eg. 1 is a factor of 181 and also of 500.

Steps to find Factors of 181 and 500

  • Step 1. Find all the numbers that would divide 181 and 500 without leaving any remainder. Starting with the number 1 upto 90 (half of 181) and 1 upto 250 (half of 500). The number 1 and the number itself are always factors of the given number.
    181 ÷ 1 : Remainder = 0
    500 ÷ 1 : Remainder = 0
    181 ÷ 181 : Remainder = 0
    500 ÷ 2 : Remainder = 0
    500 ÷ 4 : Remainder = 0
    500 ÷ 5 : Remainder = 0
    500 ÷ 10 : Remainder = 0
    500 ÷ 20 : Remainder = 0
    500 ÷ 25 : Remainder = 0
    500 ÷ 50 : Remainder = 0
    500 ÷ 100 : Remainder = 0
    500 ÷ 125 : Remainder = 0
    500 ÷ 250 : Remainder = 0
    500 ÷ 500 : Remainder = 0

Hence, Factors of 181 are 1 and 181

And, Factors of 500 are 1, 2, 4, 5, 10, 20, 25, 50, 100, 125, 250, and 500

Examples of GCF

Sammy baked 181 chocolate cookies and 500 fruit and nut cookies to package in plastic containers for her friends at college. She wants to divide the cookies into identical boxes so that each box has the same number of each kind of cookies. She wishes that each box should have greatest number of cookies possible, how many plastic boxes does she need?

Since Sammy wants to pack greatest number of cookies possible. So for calculating total number of boxes required we need to calculate the GCF of 181 and 500.
GCF of 181 and 500 is 1.

A class has 181 boys and 500 girls. A choir teacher wants to form a choir team from this class such that the students are standing in equal rows also girls or boys will be in each row. Teacher wants to know the greatest number of students that could be in each row, can you help him?

To find the greatest number of students that could be in each row, we need to find the GCF of 181 and 500. Hence, GCF of 181 and 500 is 1.

What is the relation between LCM and GCF (Greatest Common Factor)?

GCF and LCM of two numbers can be related as GCF(181, 500) = ( 181 * 500 ) / LCM(181, 500) = 1.

What is the GCF of 181 and 500?

GCF of 181 and 500 is 1.

Ram has 181 cans of Pepsi and 500 cans of Coca Cola. He wants to create identical refreshment tables that will be organized in his house warming party. He also doesn't want to have any can left over. What is the greatest number of tables that Ram can arrange?

To find the greatest number of tables that Ram can stock we need to find the GCF of 181 and 500. Hence GCF of 181 and 500 is 1. So the number of tables that can be arranged is 1.

Mary has 181 blue buttons and 500 white buttons. She wants to place them in identical groups without any buttons left, in the greatest way possible. Can you help Mary arranging them in groups?

Greatest possible way in which Mary can arrange them in groups would be GCF of 181 and 500. Hence, the GCF of 181 and 500 or the greatest arrangement is 1.

Kamal is making identical balloon arrangements for a party. He has 181 maroon balloons, and 500 orange balloons. He wants each arrangement tohave the same number of each color. What is the greatest number of arrangements that he can make if every balloon is used?

The greatest number of arrangements that he can make if every balloon is used would be equal to GCF of 181 and 500. So the GCF of 181 and 500 is 1.

Kunal is making baskets full of nuts and dried fruits. He has 181 bags of nuts and 500 bags of dried fruits. He wants each basket to be identical, containing the same combination of bags of nuts and bags of driesn fruits, with no left overs. What is the greatest number of baskets that Kunal can make?

the greatest number of baskets that Kunal can make would be equal to GCF of 181 and 500. So the GCF of 181 and 500 is 1.

To energize public transportation, Abir needs to give a few companions envelopes with transport tickets, and metro tickets in them. On the off chance that he has 181 bus tickets and 500 metro tickets to be parted similarly among the envelopes, and he need no tickets left. What is the greatest number of envelopes Abir can make?

To make the greatest number of envelopes Abir needs to find out the GCF of 181 and 500. Hence, GCF of 181 and 500 is 1.