What are factors?
In mathematics, a factor is that number which divides into another number exactly, without leaving a remainder. A factor of a number can be positive or negative.
Properties of Factors
- Each number is a factor of itself. Eg. 2100 and 990 are factors of themselves respectively.
- 1 is a factor of every number. Eg. 1 is a factor of 2100 and also of 990.
- Every number is a factor of zero (0), since 2100 x 0 = 0 and 990 x 0 = 0.
- Every number other than 1 has at least two factors, namely the number itself and 1.
- Every factor of a number is an exact divisor of that number, example 1, 2, 3, 4, 5, 6, 7, 10, 12, 14, 15, 20, 21, 25, 28, 30, 35, 42, 50, 60, 70, 75, 84, 100, 105, 140, 150, 175, 210, 300, 350, 420, 525, 700, 1050, 2100 are exact divisors of 2100 and 1, 2, 3, 5, 6, 9, 10, 11, 15, 18, 22, 30, 33, 45, 55, 66, 90, 99, 110, 165, 198, 330, 495, 990 are exact divisors of 990.
- Factors of 2100 are 1, 2, 3, 4, 5, 6, 7, 10, 12, 14, 15, 20, 21, 25, 28, 30, 35, 42, 50, 60, 70, 75, 84, 100, 105, 140, 150, 175, 210, 300, 350, 420, 525, 700, 1050, 2100. Each factor divides 2100 without leaving a remainder.
Simlarly, factors of 990 are 1, 2, 3, 5, 6, 9, 10, 11, 15, 18, 22, 30, 33, 45, 55, 66, 90, 99, 110, 165, 198, 330, 495, 990. Each factor divides 990 without leaving a remainder. - Every factor of a number is less than or equal to the number, eg. 1, 2, 3, 4, 5, 6, 7, 10, 12, 14, 15, 20, 21, 25, 28, 30, 35, 42, 50, 60, 70, 75, 84, 100, 105, 140, 150, 175, 210, 300, 350, 420, 525, 700, 1050, 2100 are all less than or equal to 2100 and 1, 2, 3, 5, 6, 9, 10, 11, 15, 18, 22, 30, 33, 45, 55, 66, 90, 99, 110, 165, 198, 330, 495, 990 are all less than or equal to 990.
Steps to find Factors of 2100 and 990
- Step 1. Find all the numbers that would divide 2100 and 990 without leaving any remainder. Starting with the number 1 upto 1050 (half of 2100) and 1 upto 495 (half of 990). The number 1 and the number itself are always factors of the given number.
2100 ÷ 1 : Remainder = 0
990 ÷ 1 : Remainder = 0
2100 ÷ 2 : Remainder = 0
990 ÷ 2 : Remainder = 0
2100 ÷ 3 : Remainder = 0
990 ÷ 3 : Remainder = 0
2100 ÷ 4 : Remainder = 0
990 ÷ 5 : Remainder = 0
2100 ÷ 5 : Remainder = 0
990 ÷ 6 : Remainder = 0
2100 ÷ 6 : Remainder = 0
990 ÷ 9 : Remainder = 0
2100 ÷ 7 : Remainder = 0
990 ÷ 10 : Remainder = 0
2100 ÷ 10 : Remainder = 0
990 ÷ 11 : Remainder = 0
2100 ÷ 12 : Remainder = 0
990 ÷ 15 : Remainder = 0
2100 ÷ 14 : Remainder = 0
990 ÷ 18 : Remainder = 0
2100 ÷ 15 : Remainder = 0
990 ÷ 22 : Remainder = 0
2100 ÷ 20 : Remainder = 0
990 ÷ 30 : Remainder = 0
2100 ÷ 21 : Remainder = 0
990 ÷ 33 : Remainder = 0
2100 ÷ 25 : Remainder = 0
990 ÷ 45 : Remainder = 0
2100 ÷ 28 : Remainder = 0
990 ÷ 55 : Remainder = 0
2100 ÷ 30 : Remainder = 0
990 ÷ 66 : Remainder = 0
2100 ÷ 35 : Remainder = 0
990 ÷ 90 : Remainder = 0
2100 ÷ 42 : Remainder = 0
990 ÷ 99 : Remainder = 0
2100 ÷ 50 : Remainder = 0
990 ÷ 110 : Remainder = 0
2100 ÷ 60 : Remainder = 0
990 ÷ 165 : Remainder = 0
2100 ÷ 70 : Remainder = 0
990 ÷ 198 : Remainder = 0
2100 ÷ 75 : Remainder = 0
990 ÷ 330 : Remainder = 0
2100 ÷ 84 : Remainder = 0
990 ÷ 495 : Remainder = 0
2100 ÷ 100 : Remainder = 0
990 ÷ 990 : Remainder = 0
2100 ÷ 105 : Remainder = 0
2100 ÷ 140 : Remainder = 0
2100 ÷ 150 : Remainder = 0
2100 ÷ 175 : Remainder = 0
2100 ÷ 210 : Remainder = 0
2100 ÷ 300 : Remainder = 0
2100 ÷ 350 : Remainder = 0
2100 ÷ 420 : Remainder = 0
2100 ÷ 525 : Remainder = 0
2100 ÷ 700 : Remainder = 0
2100 ÷ 1050 : Remainder = 0
2100 ÷ 2100 : Remainder = 0
Hence, Factors of
2100 are 1, 2, 3, 4, 5, 6, 7, 10, 12, 14, 15, 20, 21, 25, 28, 30, 35, 42, 50, 60, 70, 75, 84, 100, 105, 140, 150, 175, 210, 300, 350, 420, 525, 700, 1050, and 2100
And, Factors of
990 are 1, 2, 3, 5, 6, 9, 10, 11, 15, 18, 22, 30, 33, 45, 55, 66, 90, 99, 110, 165, 198, 330, 495, and 990
Examples of GCF
Sammy baked 2100 chocolate cookies and 990 fruit and nut cookies to package in plastic containers for her friends at college. She wants to divide the cookies into identical boxes so that each box has the same number of each kind of cookies. She wishes that each box should have greatest number of cookies possible, how many plastic boxes does she need?Since Sammy wants to pack greatest number of cookies possible. So for calculating total number of boxes required we need to calculate the GCF of 2100 and 990.
GCF of 2100 and 990 is 30.
A class has 2100 boys and 990 girls. A choir teacher wants to form a choir team from this class such that the students are standing in equal rows also girls or boys will be in each row. Teacher wants to know the greatest number of students that could be in each row, can you help him?To find the greatest number of students that could be in each row, we need to find the GCF of 2100 and 990. Hence, GCF of 2100 and 990 is 30.
What is the difference between GCF and LCM?Major and simple difference betwen GCF and LCM is that GCF gives you the greatest common factor while LCM finds out the least common factor possible for the given numbers.
Ram has 2100 cans of Pepsi and 990 cans of Coca Cola. He wants to create identical refreshment tables that will be organized in his house warming party. He also doesn't want to have any can left over. What is the greatest number of tables that Ram can arrange?To find the greatest number of tables that Ram can stock we need to find the GCF of 2100 and 990. Hence GCF of 2100 and 990 is 30. So the number of tables that can be arranged is 30.
Ariel is making ready to eat meals to share with friends. She has 2100 bottles of water and 990 cans of food, which she would like to distribute equally, with no left overs. What is the greatest number of boxes Ariel can make?The greatest number of boxes Ariel can make would be equal to GCF of 2100 and 990. So the GCF of 2100 and 990 is 30.
Mary has 2100 blue buttons and 990 white buttons. She wants to place them in identical groups without any buttons left, in the greatest way possible. Can you help Mary arranging them in groups?Greatest possible way in which Mary can arrange them in groups would be GCF of 2100 and 990. Hence, the GCF of 2100 and 990 or the greatest arrangement is 30.
Kamal is making identical balloon arrangements for a party. He has 2100 maroon balloons, and 990 orange balloons. He wants each arrangement tohave the same number of each color. What is the greatest number of arrangements that he can make if every balloon is used?The greatest number of arrangements that he can make if every balloon is used would be equal to GCF of 2100 and 990. So the GCF of 2100 and 990 is 30.
Kunal is making baskets full of nuts and dried fruits. He has 2100 bags of nuts and 990 bags of dried fruits. He wants each basket to be identical, containing the same combination of bags of nuts and bags of driesn fruits, with no left overs. What is the greatest number of baskets that Kunal can make?the greatest number of baskets that Kunal can make would be equal to GCF of 2100 and 990. So the GCF of 2100 and 990 is 30.
To energize public transportation, Abir needs to give a few companions envelopes with transport tickets, and metro tickets in them. On the off chance that he has 2100 bus tickets and 990 metro tickets to be parted similarly among the envelopes, and he need no tickets left. What is the greatest number of envelopes Abir can make?To make the greatest number of envelopes Abir needs to find out the GCF of 2100 and 990. Hence, GCF of 2100 and 990 is 30.