Definition of GCF
Greatest common factor commonly known as GCF of the two numbers is the highest possible number which completely divides given numbers, i.e. without leaving any remainder. It is represented as GCF (2205, 3675).
Properties of GCF
- The GCF of two or more given numbers is always less than the given numbers. Eg- GCF of 2205 and 3675 is 735, where 735 is less than both the numbers.
- If the given numbers are consecutive than GCF is always 1.
- Product of two numbers is always equal to the product of their GCF and LCM.
- The GCF of two given numbers where one of them is a prime number is either 1 or the number itself.
What are factors?
In mathematics, a factor is that number which divides into another number exactly, without leaving a remainder. A factor of a number can be positive or negative.
Properties of Factors
- Every factor of a number is an exact divisor of that number, example 1, 3, 5, 7, 9, 15, 21, 35, 45, 49, 63, 105, 147, 245, 315, 441, 735, 2205 are exact divisors of 2205 and 1, 3, 5, 7, 15, 21, 25, 35, 49, 75, 105, 147, 175, 245, 525, 735, 1225, 3675 are exact divisors of 3675.
- Every number other than 1 has at least two factors, namely the number itself and 1.
- Each number is a factor of itself. Eg. 2205 and 3675 are factors of themselves respectively.
- 1 is a factor of every number. Eg. 1 is a factor of 2205 and also of 3675.
Steps to find Factors of 2205 and 3675
- Step 1. Find all the numbers that would divide 2205 and 3675 without leaving any remainder. Starting with the number 1 upto 1102 (half of 2205) and 1 upto 1837 (half of 3675). The number 1 and the number itself are always factors of the given number.
2205 ÷ 1 : Remainder = 0
3675 ÷ 1 : Remainder = 0
2205 ÷ 3 : Remainder = 0
3675 ÷ 3 : Remainder = 0
2205 ÷ 5 : Remainder = 0
3675 ÷ 5 : Remainder = 0
2205 ÷ 7 : Remainder = 0
3675 ÷ 7 : Remainder = 0
2205 ÷ 9 : Remainder = 0
3675 ÷ 15 : Remainder = 0
2205 ÷ 15 : Remainder = 0
3675 ÷ 21 : Remainder = 0
2205 ÷ 21 : Remainder = 0
3675 ÷ 25 : Remainder = 0
2205 ÷ 35 : Remainder = 0
3675 ÷ 35 : Remainder = 0
2205 ÷ 45 : Remainder = 0
3675 ÷ 49 : Remainder = 0
2205 ÷ 49 : Remainder = 0
3675 ÷ 75 : Remainder = 0
2205 ÷ 63 : Remainder = 0
3675 ÷ 105 : Remainder = 0
2205 ÷ 105 : Remainder = 0
3675 ÷ 147 : Remainder = 0
2205 ÷ 147 : Remainder = 0
3675 ÷ 175 : Remainder = 0
2205 ÷ 245 : Remainder = 0
3675 ÷ 245 : Remainder = 0
2205 ÷ 315 : Remainder = 0
3675 ÷ 525 : Remainder = 0
2205 ÷ 441 : Remainder = 0
3675 ÷ 735 : Remainder = 0
2205 ÷ 735 : Remainder = 0
3675 ÷ 1225 : Remainder = 0
2205 ÷ 2205 : Remainder = 0
3675 ÷ 3675 : Remainder = 0
Hence, Factors of
2205 are 1, 3, 5, 7, 9, 15, 21, 35, 45, 49, 63, 105, 147, 245, 315, 441, 735, and 2205
And, Factors of
3675 are 1, 3, 5, 7, 15, 21, 25, 35, 49, 75, 105, 147, 175, 245, 525, 735, 1225, and 3675
Examples of GCF
Sammy baked 2205 chocolate cookies and 3675 fruit and nut cookies to package in plastic containers for her friends at college. She wants to divide the cookies into identical boxes so that each box has the same number of each kind of cookies. She wishes that each box should have greatest number of cookies possible, how many plastic boxes does she need?Since Sammy wants to pack greatest number of cookies possible. So for calculating total number of boxes required we need to calculate the GCF of 2205 and 3675.
GCF of 2205 and 3675 is 735.
What is the difference between GCF and LCM?Major and simple difference betwen GCF and LCM is that GCF gives you the greatest common factor while LCM finds out the least common factor possible for the given numbers.
What is the relation between LCM and GCF (Greatest Common Factor)?GCF and LCM of two numbers can be related as GCF(2205, 3675) = ( 2205 * 3675 ) / LCM(2205, 3675) = 735.
What is the GCF of 2205 and 3675?GCF of 2205 and 3675 is 735.
Ram has 2205 cans of Pepsi and 3675 cans of Coca Cola. He wants to create identical refreshment tables that will be organized in his house warming party. He also doesn't want to have any can left over. What is the greatest number of tables that Ram can arrange?To find the greatest number of tables that Ram can stock we need to find the GCF of 2205 and 3675. Hence GCF of 2205 and 3675 is 735. So the number of tables that can be arranged is 735.
Rubel is creating individual servings of starters for her birthday party. He has 2205 pizzas and 3675 hamburgers. He wants each serving to be identical, with no left overs. Can you help Rubel in arranging the same in greatest possible way?The greatest number of servings Rubel can create would be equal to the GCF of 2205 and 3675. Thus GCF of 2205 and 3675 is 735.
Ariel is making ready to eat meals to share with friends. She has 2205 bottles of water and 3675 cans of food, which she would like to distribute equally, with no left overs. What is the greatest number of boxes Ariel can make?The greatest number of boxes Ariel can make would be equal to GCF of 2205 and 3675. So the GCF of 2205 and 3675 is 735.
Mary has 2205 blue buttons and 3675 white buttons. She wants to place them in identical groups without any buttons left, in the greatest way possible. Can you help Mary arranging them in groups?Greatest possible way in which Mary can arrange them in groups would be GCF of 2205 and 3675. Hence, the GCF of 2205 and 3675 or the greatest arrangement is 735.
Kamal is making identical balloon arrangements for a party. He has 2205 maroon balloons, and 3675 orange balloons. He wants each arrangement tohave the same number of each color. What is the greatest number of arrangements that he can make if every balloon is used?The greatest number of arrangements that he can make if every balloon is used would be equal to GCF of 2205 and 3675. So the GCF of 2205 and 3675 is 735.