What is LCM of 512 and 648?


How do we define LCM?

LCM, abbreviation for least common multiple, is defined as the smallest number that is the product of two or more numbers 512 and 648

Properties of LCM

  • The LCM of two given numbers is never less than any of those numbers. Eg- LCM of 512 and 648 is 41472, where 512 and 648 are less than 41472.
  • LCM is associative which means LCM(512, 648) = LCM(648, 512).
  • LCM is commutative which means LCM(a, b, c) = LCM(LCM(a, b), c) = LCM(a, LCM(b, c)).
  • LCM is distributive, which means LCM(ab, bc, ad) = d * LCM(x, y, z).
  • The LCM of two or more prime numbers is their product.

Steps to find lcm of 512 and 648 by Listing Method

Example: Find lcm of 512 and 648 by Listing Method

  • Multiples of 512: 512, 1024, 1536, 2048, 2560, 3072, 3584, 4096, 4608, 5120, 5632, 6144, 6656, 7168, 7680, 8192, 8704, 9216, 9728, 10240, 10752, 11264, 11776, 12288, 12800, 13312, 13824, 14336, 14848, 15360, 15872, 16384, 16896, 17408, 17920, 18432, 18944, 19456, 19968, 20480, 20992, 21504, 22016, 22528, 23040, 23552, 24064, 24576, 25088, 25600, 26112, 26624, 27136, 27648, 28160, 28672, 29184, 29696, 30208, 30720, 31232, 31744, 32256, 32768, 33280, 33792, 34304, 34816, 35328, 35840, 36352, 36864, 37376, 37888, 38400, 38912, 39424, 39936, 40448, 40960, 41472, 41984, 42496, 43008, 43520, 44032, 44544, 45056, 45568, 46080, 46592, 47104, 47616, 48128, 48640, 49152, 49664, 50176, 50688, 51200, 51712, 52224, 52736, 53248, 53760, 54272, 54784, 55296, 55808, 56320, 56832, 57344, 57856, 58368, 58880, 59392, 59904, 60416, 60928, 61440, 61952, 62464, 62976, 63488, 64000, 64512, 65024, 65536, 66048, 66560, 67072, 67584, 68096, 68608, 69120, 69632, 70144, 70656, 71168, 71680, 72192, 72704, 73216, 73728, 74240, 74752, 75264, 75776, 76288, 76800, 77312, 77824, 78336, 78848, 79360, 79872, 80384, 80896, 81408, 81920, 82432, 82944, 83456, 83968, 84480, 84992, 85504, 86016, 86528, 87040, 87552, 88064, 88576, 89088, 89600, 90112, 90624, 91136, 91648, 92160, 92672, 93184, 93696, 94208, 94720, 95232, 95744, 96256, 96768, 97280, 97792, 98304, 98816, 99328, 99840, 100352, 100864, 101376, 101888, 102400, 102912, 103424, 103936, 104448, 104960, 105472, 105984, 106496, 107008, 107520, 108032, 108544, 109056, 109568, 110080, 110592, 111104, 111616, 112128, 112640, 113152, 113664, 114176, 114688, 115200, 115712, 116224, 116736, 117248, 117760, 118272, 118784, 119296, 119808, 120320, 120832, 121344, 121856, 122368, 122880, 123392, 123904, 124416, 124928, 125440, 125952, 126464, 126976, 127488, 128000, 128512, 129024, 129536, 130048, 130560, 131072, 131584, 132096, 132608, 133120, 133632, 134144, 134656, 135168, 135680, 136192, 136704, 137216, 137728, 138240, 138752, 139264, 139776, 140288, 140800, 141312, 141824, 142336, 142848, 143360, 143872, 144384, 144896, 145408, 145920, 146432, 146944, 147456, 147968, 148480, 148992, 149504, 150016, 150528, 151040, 151552, 152064, 152576, 153088, 153600, 154112, 154624, 155136, 155648, 156160, 156672, 157184, 157696, 158208, 158720, 159232, 159744, 160256, 160768, 161280, 161792, 162304, 162816, 163328, 163840, 164352, 164864, 165376, 165888, 166400, 166912, 167424, 167936, 168448, 168960, 169472, 169984, 170496, 171008, 171520, 172032, 172544, 173056, 173568, 174080, 174592, 175104, 175616, 176128, 176640, 177152, 177664, 178176, 178688, 179200, 179712, 180224, 180736, 181248, 181760, 182272, 182784, 183296, 183808, 184320, 184832, 185344, 185856, 186368, 186880, 187392, 187904, 188416, 188928, 189440, 189952, 190464, 190976, 191488, 192000, 192512, 193024, 193536, 194048, 194560, 195072, 195584, 196096, 196608, 197120, 197632, 198144, 198656, 199168, 199680, 200192, 200704, 201216, 201728, 202240, 202752, 203264, 203776, 204288, 204800, 205312, 205824, 206336, 206848, 207360, 207872, 208384, 208896, 209408, 209920, 210432, 210944, 211456, 211968, 212480, 212992, 213504, 214016, 214528, 215040, 215552, 216064, 216576, 217088, 217600, 218112, 218624, 219136, 219648, 220160, 220672, 221184, 221696, 222208, 222720, 223232, 223744, 224256, 224768, 225280, 225792, 226304, 226816, 227328, 227840, 228352, 228864, 229376, 229888, 230400, 230912, 231424, 231936, 232448, 232960, 233472, 233984, 234496, 235008, 235520, 236032, 236544, 237056, 237568, 238080, 238592, 239104, 239616, 240128, 240640, 241152, 241664, 242176, 242688, 243200, 243712, 244224, 244736, 245248, 245760, 246272, 246784, 247296, 247808, 248320, 248832, 249344, 249856, 250368, 250880, 251392, 251904, 252416, 252928, 253440, 253952, 254464, 254976, 255488, 256000, 256512, 257024, 257536, 258048, 258560, 259072, 259584, 260096, 260608, 261120, 261632, 262144, 262656, 263168, 263680, 264192, 264704, 265216, 265728, 266240, 266752, 267264, 267776, 268288, 268800, 269312, 269824, 270336, 270848, 271360, 271872, 272384, 272896, 273408, 273920, 274432, 274944, 275456, 275968, 276480, 276992, 277504, 278016, 278528, 279040, 279552, 280064, 280576, 281088, 281600, 282112, 282624, 283136, 283648, 284160, 284672, 285184, 285696, 286208, 286720, 287232, 287744, 288256, 288768, 289280, 289792, 290304, 290816, 291328, 291840, 292352, 292864, 293376, 293888, 294400, 294912, 295424, 295936, 296448, 296960, 297472, 297984, 298496, 299008, 299520, 300032, 300544, 301056, 301568, 302080, 302592, 303104, 303616, 304128, 304640, 305152, 305664, 306176, 306688, 307200, 307712, 308224, 308736, 309248, 309760, 310272, 310784, 311296, 311808, 312320, 312832, 313344, 313856, 314368, 314880, 315392, 315904, 316416, 316928, 317440, 317952, 318464, 318976, 319488, 320000, 320512, 321024, 321536, 322048, 322560, 323072, 323584, 324096, 324608, 325120, 325632, 326144, 326656, 327168, 327680, 328192, 328704, 329216, 329728, 330240, 330752, 331264, 331776
  • Multiples of 648: 648, 1296, 1944, 2592, 3240, 3888, 4536, 5184, 5832, 6480, 7128, 7776, 8424, 9072, 9720, 10368, 11016, 11664, 12312, 12960, 13608, 14256, 14904, 15552, 16200, 16848, 17496, 18144, 18792, 19440, 20088, 20736, 21384, 22032, 22680, 23328, 23976, 24624, 25272, 25920, 26568, 27216, 27864, 28512, 29160, 29808, 30456, 31104, 31752, 32400, 33048, 33696, 34344, 34992, 35640, 36288, 36936, 37584, 38232, 38880, 39528, 40176, 40824, 41472, 42120, 42768, 43416, 44064, 44712, 45360, 46008, 46656, 47304, 47952, 48600, 49248, 49896, 50544, 51192, 51840, 52488, 53136, 53784, 54432, 55080, 55728, 56376, 57024, 57672, 58320, 58968, 59616, 60264, 60912, 61560, 62208, 62856, 63504, 64152, 64800, 65448, 66096, 66744, 67392, 68040, 68688, 69336, 69984, 70632, 71280, 71928, 72576, 73224, 73872, 74520, 75168, 75816, 76464, 77112, 77760, 78408, 79056, 79704, 80352, 81000, 81648, 82296, 82944, 83592, 84240, 84888, 85536, 86184, 86832, 87480, 88128, 88776, 89424, 90072, 90720, 91368, 92016, 92664, 93312, 93960, 94608, 95256, 95904, 96552, 97200, 97848, 98496, 99144, 99792, 100440, 101088, 101736, 102384, 103032, 103680, 104328, 104976, 105624, 106272, 106920, 107568, 108216, 108864, 109512, 110160, 110808, 111456, 112104, 112752, 113400, 114048, 114696, 115344, 115992, 116640, 117288, 117936, 118584, 119232, 119880, 120528, 121176, 121824, 122472, 123120, 123768, 124416, 125064, 125712, 126360, 127008, 127656, 128304, 128952, 129600, 130248, 130896, 131544, 132192, 132840, 133488, 134136, 134784, 135432, 136080, 136728, 137376, 138024, 138672, 139320, 139968, 140616, 141264, 141912, 142560, 143208, 143856, 144504, 145152, 145800, 146448, 147096, 147744, 148392, 149040, 149688, 150336, 150984, 151632, 152280, 152928, 153576, 154224, 154872, 155520, 156168, 156816, 157464, 158112, 158760, 159408, 160056, 160704, 161352, 162000, 162648, 163296, 163944, 164592, 165240, 165888, 166536, 167184, 167832, 168480, 169128, 169776, 170424, 171072, 171720, 172368, 173016, 173664, 174312, 174960, 175608, 176256, 176904, 177552, 178200, 178848, 179496, 180144, 180792, 181440, 182088, 182736, 183384, 184032, 184680, 185328, 185976, 186624, 187272, 187920, 188568, 189216, 189864, 190512, 191160, 191808, 192456, 193104, 193752, 194400, 195048, 195696, 196344, 196992, 197640, 198288, 198936, 199584, 200232, 200880, 201528, 202176, 202824, 203472, 204120, 204768, 205416, 206064, 206712, 207360, 208008, 208656, 209304, 209952, 210600, 211248, 211896, 212544, 213192, 213840, 214488, 215136, 215784, 216432, 217080, 217728, 218376, 219024, 219672, 220320, 220968, 221616, 222264, 222912, 223560, 224208, 224856, 225504, 226152, 226800, 227448, 228096, 228744, 229392, 230040, 230688, 231336, 231984, 232632, 233280, 233928, 234576, 235224, 235872, 236520, 237168, 237816, 238464, 239112, 239760, 240408, 241056, 241704, 242352, 243000, 243648, 244296, 244944, 245592, 246240, 246888, 247536, 248184, 248832, 249480, 250128, 250776, 251424, 252072, 252720, 253368, 254016, 254664, 255312, 255960, 256608, 257256, 257904, 258552, 259200, 259848, 260496, 261144, 261792, 262440, 263088, 263736, 264384, 265032, 265680, 266328, 266976, 267624, 268272, 268920, 269568, 270216, 270864, 271512, 272160, 272808, 273456, 274104, 274752, 275400, 276048, 276696, 277344, 277992, 278640, 279288, 279936, 280584, 281232, 281880, 282528, 283176, 283824, 284472, 285120, 285768, 286416, 287064, 287712, 288360, 289008, 289656, 290304, 290952, 291600, 292248, 292896, 293544, 294192, 294840, 295488, 296136, 296784, 297432, 298080, 298728, 299376, 300024, 300672, 301320, 301968, 302616, 303264, 303912, 304560, 305208, 305856, 306504, 307152, 307800, 308448, 309096, 309744, 310392, 311040, 311688, 312336, 312984, 313632, 314280, 314928, 315576, 316224, 316872, 317520, 318168, 318816, 319464, 320112, 320760, 321408, 322056, 322704, 323352, 324000, 324648, 325296, 325944, 326592, 327240, 327888, 328536, 329184, 329832, 330480, 331128, 331776

Hence, LCM of 512 and 648 is 41472.

Steps to find LCM of 512 and 648 by Common Division Method

Example: Find lcm of 512 and 648 by Common Division Method

2 512 648
2 256 324
2 128 162
2 64 81
2 32 81
2 16 81
2 8 81
2 4 81
2 2 81
3 1 81
3 1 27
3 1 9
3 1 3
1 1

Hence, LCM of 512 and 648 is 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 3 x 3 x 3 x 3 = 41472.

Steps to find lcm of 512 and 648 by Formula

Example: Find lcm of 512 and 648 by Formula

  • GCF of 512 and 648 = 8
  • LCM of 512 and 648 = (512 x 648) / 8
  • => 331776 / 8

Hence, LCM of 512 and 648 is 41472.

Examples

Franky and Joy are running on a circular track. They start at the same time. They take 512 and 648 minutes respectively to go round once. Find at what time they will run together?

Franky and Joy are running on a circular track. They take 512 and 648 minutes respectively to go round once. We need to find out at what time (minimum) they will run together again. For this we need to find the LCM of 512 and 648.
So, LCM of 512 and 648 is 41472.

A shopkeeper sells candies in packet of 512 and chocolates in packet of 648. What is the least number of candies and chocolates Annie should buy so that there will be one candy for each chocolate?

The least number of candies and chocolates Annie should buy so that there will be one candy for each chocolate we need to find the lcm of 512 and 648.
So, LCM of 512 and 648 is 41472.

Both the cricket team and the rugby team had games, today. The cricket team plays every 512 days and the basketball team plays every 648 days. When will both teams have games on the same day again?

Given that the cricket team plays every 512 days and the basketball team plays every 648 days, so for finding the next time when both teams will play again we need to find the LCM of 512 and 648.
So, LCM of 512 and 648 is 41472.

Sammy's company prints 512 textbooks at a time. Daniel's company prints textbooks in sets of 648 at a time. According to a survey done by a committee, both companies printed the same number of textbooks last year. Find the least number of books that each company would have printed.

To find the least number of textbooks that each company could have printed we need to find the LCM of 512 and 648.
So, LCM of 512 and 648 is 41472.

Ariel exercises every 512 days and Rubel every 648 days. They both excercised today. How many days will it be until they excercise together again?

The problem can be solved using LCM, because we are trying to figure out the least time until they excercise together again.
So, LCM of 512 and 648 is 41472.

What is the relation between LCM and GCF( Greatest Common Factor)?

Greatest common factors or gcf of 512 and 648 is GCF(512, 648) * LCM(512, 648) = (512 x 648) / GCF(512, 648) = 41472.

Find the least number which is exactly divisible by 512 and 648.

Least number which is exactly divisible by 512 and 648 is 41472.