What is LCM of 567 and 729?


How do we define LCM?

LCM, abbreviation for least common multiple, is defined as the smallest number that is the product of two or more numbers 567 and 729

Properties of LCM

  • The LCM of two given numbers is never less than any of those numbers. Eg- LCM of 567 and 729 is 5103, where 567 and 729 are less than 5103.
  • LCM is commutative which means LCM(a, b, c) = LCM(LCM(a, b), c) = LCM(a, LCM(b, c)).
  • The LCM of two or more prime numbers is exactly equal to their product.
  • LCM is associative which means LCM(567, 729) = LCM(729, 567).
  • LCM is distributive, which means LCM(ab, bc, ad) = d * LCM(x, y, z).

Steps to find lcm of 567 and 729 by Listing Method

Example: Find lcm of 567 and 729 by Listing Method

  • Multiples of 567: 567, 1134, 1701, 2268, 2835, 3402, 3969, 4536, 5103, 5670, 6237, 6804, 7371, 7938, 8505, 9072, 9639, 10206, 10773, 11340, 11907, 12474, 13041, 13608, 14175, 14742, 15309, 15876, 16443, 17010, 17577, 18144, 18711, 19278, 19845, 20412, 20979, 21546, 22113, 22680, 23247, 23814, 24381, 24948, 25515, 26082, 26649, 27216, 27783, 28350, 28917, 29484, 30051, 30618, 31185, 31752, 32319, 32886, 33453, 34020, 34587, 35154, 35721, 36288, 36855, 37422, 37989, 38556, 39123, 39690, 40257, 40824, 41391, 41958, 42525, 43092, 43659, 44226, 44793, 45360, 45927, 46494, 47061, 47628, 48195, 48762, 49329, 49896, 50463, 51030, 51597, 52164, 52731, 53298, 53865, 54432, 54999, 55566, 56133, 56700, 57267, 57834, 58401, 58968, 59535, 60102, 60669, 61236, 61803, 62370, 62937, 63504, 64071, 64638, 65205, 65772, 66339, 66906, 67473, 68040, 68607, 69174, 69741, 70308, 70875, 71442, 72009, 72576, 73143, 73710, 74277, 74844, 75411, 75978, 76545, 77112, 77679, 78246, 78813, 79380, 79947, 80514, 81081, 81648, 82215, 82782, 83349, 83916, 84483, 85050, 85617, 86184, 86751, 87318, 87885, 88452, 89019, 89586, 90153, 90720, 91287, 91854, 92421, 92988, 93555, 94122, 94689, 95256, 95823, 96390, 96957, 97524, 98091, 98658, 99225, 99792, 100359, 100926, 101493, 102060, 102627, 103194, 103761, 104328, 104895, 105462, 106029, 106596, 107163, 107730, 108297, 108864, 109431, 109998, 110565, 111132, 111699, 112266, 112833, 113400, 113967, 114534, 115101, 115668, 116235, 116802, 117369, 117936, 118503, 119070, 119637, 120204, 120771, 121338, 121905, 122472, 123039, 123606, 124173, 124740, 125307, 125874, 126441, 127008, 127575, 128142, 128709, 129276, 129843, 130410, 130977, 131544, 132111, 132678, 133245, 133812, 134379, 134946, 135513, 136080, 136647, 137214, 137781, 138348, 138915, 139482, 140049, 140616, 141183, 141750, 142317, 142884, 143451, 144018, 144585, 145152, 145719, 146286, 146853, 147420, 147987, 148554, 149121, 149688, 150255, 150822, 151389, 151956, 152523, 153090, 153657, 154224, 154791, 155358, 155925, 156492, 157059, 157626, 158193, 158760, 159327, 159894, 160461, 161028, 161595, 162162, 162729, 163296, 163863, 164430, 164997, 165564, 166131, 166698, 167265, 167832, 168399, 168966, 169533, 170100, 170667, 171234, 171801, 172368, 172935, 173502, 174069, 174636, 175203, 175770, 176337, 176904, 177471, 178038, 178605, 179172, 179739, 180306, 180873, 181440, 182007, 182574, 183141, 183708, 184275, 184842, 185409, 185976, 186543, 187110, 187677, 188244, 188811, 189378, 189945, 190512, 191079, 191646, 192213, 192780, 193347, 193914, 194481, 195048, 195615, 196182, 196749, 197316, 197883, 198450, 199017, 199584, 200151, 200718, 201285, 201852, 202419, 202986, 203553, 204120, 204687, 205254, 205821, 206388, 206955, 207522, 208089, 208656, 209223, 209790, 210357, 210924, 211491, 212058, 212625, 213192, 213759, 214326, 214893, 215460, 216027, 216594, 217161, 217728, 218295, 218862, 219429, 219996, 220563, 221130, 221697, 222264, 222831, 223398, 223965, 224532, 225099, 225666, 226233, 226800, 227367, 227934, 228501, 229068, 229635, 230202, 230769, 231336, 231903, 232470, 233037, 233604, 234171, 234738, 235305, 235872, 236439, 237006, 237573, 238140, 238707, 239274, 239841, 240408, 240975, 241542, 242109, 242676, 243243, 243810, 244377, 244944, 245511, 246078, 246645, 247212, 247779, 248346, 248913, 249480, 250047, 250614, 251181, 251748, 252315, 252882, 253449, 254016, 254583, 255150, 255717, 256284, 256851, 257418, 257985, 258552, 259119, 259686, 260253, 260820, 261387, 261954, 262521, 263088, 263655, 264222, 264789, 265356, 265923, 266490, 267057, 267624, 268191, 268758, 269325, 269892, 270459, 271026, 271593, 272160, 272727, 273294, 273861, 274428, 274995, 275562, 276129, 276696, 277263, 277830, 278397, 278964, 279531, 280098, 280665, 281232, 281799, 282366, 282933, 283500, 284067, 284634, 285201, 285768, 286335, 286902, 287469, 288036, 288603, 289170, 289737, 290304, 290871, 291438, 292005, 292572, 293139, 293706, 294273, 294840, 295407, 295974, 296541, 297108, 297675, 298242, 298809, 299376, 299943, 300510, 301077, 301644, 302211, 302778, 303345, 303912, 304479, 305046, 305613, 306180, 306747, 307314, 307881, 308448, 309015, 309582, 310149, 310716, 311283, 311850, 312417, 312984, 313551, 314118, 314685, 315252, 315819, 316386, 316953, 317520, 318087, 318654, 319221, 319788, 320355, 320922, 321489, 322056, 322623, 323190, 323757, 324324, 324891, 325458, 326025, 326592, 327159, 327726, 328293, 328860, 329427, 329994, 330561, 331128, 331695, 332262, 332829, 333396, 333963, 334530, 335097, 335664, 336231, 336798, 337365, 337932, 338499, 339066, 339633, 340200, 340767, 341334, 341901, 342468, 343035, 343602, 344169, 344736, 345303, 345870, 346437, 347004, 347571, 348138, 348705, 349272, 349839, 350406, 350973, 351540, 352107, 352674, 353241, 353808, 354375, 354942, 355509, 356076, 356643, 357210, 357777, 358344, 358911, 359478, 360045, 360612, 361179, 361746, 362313, 362880, 363447, 364014, 364581, 365148, 365715, 366282, 366849, 367416, 367983, 368550, 369117, 369684, 370251, 370818, 371385, 371952, 372519, 373086, 373653, 374220, 374787, 375354, 375921, 376488, 377055, 377622, 378189, 378756, 379323, 379890, 380457, 381024, 381591, 382158, 382725, 383292, 383859, 384426, 384993, 385560, 386127, 386694, 387261, 387828, 388395, 388962, 389529, 390096, 390663, 391230, 391797, 392364, 392931, 393498, 394065, 394632, 395199, 395766, 396333, 396900, 397467, 398034, 398601, 399168, 399735, 400302, 400869, 401436, 402003, 402570, 403137, 403704, 404271, 404838, 405405, 405972, 406539, 407106, 407673, 408240, 408807, 409374, 409941, 410508, 411075, 411642, 412209, 412776, 413343
  • Multiples of 729: 729, 1458, 2187, 2916, 3645, 4374, 5103, 5832, 6561, 7290, 8019, 8748, 9477, 10206, 10935, 11664, 12393, 13122, 13851, 14580, 15309, 16038, 16767, 17496, 18225, 18954, 19683, 20412, 21141, 21870, 22599, 23328, 24057, 24786, 25515, 26244, 26973, 27702, 28431, 29160, 29889, 30618, 31347, 32076, 32805, 33534, 34263, 34992, 35721, 36450, 37179, 37908, 38637, 39366, 40095, 40824, 41553, 42282, 43011, 43740, 44469, 45198, 45927, 46656, 47385, 48114, 48843, 49572, 50301, 51030, 51759, 52488, 53217, 53946, 54675, 55404, 56133, 56862, 57591, 58320, 59049, 59778, 60507, 61236, 61965, 62694, 63423, 64152, 64881, 65610, 66339, 67068, 67797, 68526, 69255, 69984, 70713, 71442, 72171, 72900, 73629, 74358, 75087, 75816, 76545, 77274, 78003, 78732, 79461, 80190, 80919, 81648, 82377, 83106, 83835, 84564, 85293, 86022, 86751, 87480, 88209, 88938, 89667, 90396, 91125, 91854, 92583, 93312, 94041, 94770, 95499, 96228, 96957, 97686, 98415, 99144, 99873, 100602, 101331, 102060, 102789, 103518, 104247, 104976, 105705, 106434, 107163, 107892, 108621, 109350, 110079, 110808, 111537, 112266, 112995, 113724, 114453, 115182, 115911, 116640, 117369, 118098, 118827, 119556, 120285, 121014, 121743, 122472, 123201, 123930, 124659, 125388, 126117, 126846, 127575, 128304, 129033, 129762, 130491, 131220, 131949, 132678, 133407, 134136, 134865, 135594, 136323, 137052, 137781, 138510, 139239, 139968, 140697, 141426, 142155, 142884, 143613, 144342, 145071, 145800, 146529, 147258, 147987, 148716, 149445, 150174, 150903, 151632, 152361, 153090, 153819, 154548, 155277, 156006, 156735, 157464, 158193, 158922, 159651, 160380, 161109, 161838, 162567, 163296, 164025, 164754, 165483, 166212, 166941, 167670, 168399, 169128, 169857, 170586, 171315, 172044, 172773, 173502, 174231, 174960, 175689, 176418, 177147, 177876, 178605, 179334, 180063, 180792, 181521, 182250, 182979, 183708, 184437, 185166, 185895, 186624, 187353, 188082, 188811, 189540, 190269, 190998, 191727, 192456, 193185, 193914, 194643, 195372, 196101, 196830, 197559, 198288, 199017, 199746, 200475, 201204, 201933, 202662, 203391, 204120, 204849, 205578, 206307, 207036, 207765, 208494, 209223, 209952, 210681, 211410, 212139, 212868, 213597, 214326, 215055, 215784, 216513, 217242, 217971, 218700, 219429, 220158, 220887, 221616, 222345, 223074, 223803, 224532, 225261, 225990, 226719, 227448, 228177, 228906, 229635, 230364, 231093, 231822, 232551, 233280, 234009, 234738, 235467, 236196, 236925, 237654, 238383, 239112, 239841, 240570, 241299, 242028, 242757, 243486, 244215, 244944, 245673, 246402, 247131, 247860, 248589, 249318, 250047, 250776, 251505, 252234, 252963, 253692, 254421, 255150, 255879, 256608, 257337, 258066, 258795, 259524, 260253, 260982, 261711, 262440, 263169, 263898, 264627, 265356, 266085, 266814, 267543, 268272, 269001, 269730, 270459, 271188, 271917, 272646, 273375, 274104, 274833, 275562, 276291, 277020, 277749, 278478, 279207, 279936, 280665, 281394, 282123, 282852, 283581, 284310, 285039, 285768, 286497, 287226, 287955, 288684, 289413, 290142, 290871, 291600, 292329, 293058, 293787, 294516, 295245, 295974, 296703, 297432, 298161, 298890, 299619, 300348, 301077, 301806, 302535, 303264, 303993, 304722, 305451, 306180, 306909, 307638, 308367, 309096, 309825, 310554, 311283, 312012, 312741, 313470, 314199, 314928, 315657, 316386, 317115, 317844, 318573, 319302, 320031, 320760, 321489, 322218, 322947, 323676, 324405, 325134, 325863, 326592, 327321, 328050, 328779, 329508, 330237, 330966, 331695, 332424, 333153, 333882, 334611, 335340, 336069, 336798, 337527, 338256, 338985, 339714, 340443, 341172, 341901, 342630, 343359, 344088, 344817, 345546, 346275, 347004, 347733, 348462, 349191, 349920, 350649, 351378, 352107, 352836, 353565, 354294, 355023, 355752, 356481, 357210, 357939, 358668, 359397, 360126, 360855, 361584, 362313, 363042, 363771, 364500, 365229, 365958, 366687, 367416, 368145, 368874, 369603, 370332, 371061, 371790, 372519, 373248, 373977, 374706, 375435, 376164, 376893, 377622, 378351, 379080, 379809, 380538, 381267, 381996, 382725, 383454, 384183, 384912, 385641, 386370, 387099, 387828, 388557, 389286, 390015, 390744, 391473, 392202, 392931, 393660, 394389, 395118, 395847, 396576, 397305, 398034, 398763, 399492, 400221, 400950, 401679, 402408, 403137, 403866, 404595, 405324, 406053, 406782, 407511, 408240, 408969, 409698, 410427, 411156, 411885, 412614, 413343

Hence, LCM of 567 and 729 is 5103.

Steps to find LCM of 567 and 729 by Common Division Method

Example: Find lcm of 567 and 729 by Common Division Method

3 567 729
3 189 243
3 63 81
3 21 27
3 7 9
3 7 3
7 7 1
1 1

Hence, LCM of 567 and 729 is 3 x 3 x 3 x 3 x 3 x 3 x 7 = 5103.

Steps to find lcm of 567 and 729 by Formula

Example: Find lcm of 567 and 729 by Formula

  • GCF of 567 and 729 = 81
  • LCM of 567 and 729 = (567 x 729) / 81
  • => 413343 / 81

Hence, LCM of 567 and 729 is 5103.

Examples

Franky and Joy are running on a circular track. They start at the same time. They take 567 and 729 minutes respectively to go round once. Find at what time they will run together?

Franky and Joy are running on a circular track. They take 567 and 729 minutes respectively to go round once. We need to find out at what time (minimum) they will run together again. For this we need to find the LCM of 567 and 729.
So, LCM of 567 and 729 is 5103.

Boxes that are 567 inches tall are being pilled next to boxes that are 729 inches tall. What is the least height in feet at which the two piles will be the same height?

To find the least height in feet at which the two piles will be at same height we will find LCM of 567 and 729.
So, LCM of 567 and 729 is 5103.

Sammy's company prints 567 textbooks at a time. Daniel's company prints textbooks in sets of 729 at a time. According to a survey done by a committee, both companies printed the same number of textbooks last year. Find the least number of books that each company would have printed.

To find the least number of textbooks that each company could have printed we need to find the LCM of 567 and 729.
So, LCM of 567 and 729 is 5103.

Ariel exercises every 567 days and Rubel every 729 days. They both excercised today. How many days will it be until they excercise together again?

The problem can be solved using LCM, because we are trying to figure out the least time until they excercise together again.
So, LCM of 567 and 729 is 5103.

Find the LCM of 567 and 729 using GCF method.

Greatest common factor or gcf of 567 and 729 is GCF(567, 729) x LCM(567, 729) = (567 x 729) / GCF(567, 729) = 5103.

Find the least common multiple of 567 and 729.

Least common multiple of 567 and 729 is 5103.

Find the least number which is exactly divisible by 567 and 729.

Least number which is exactly divisible by 567 and 729 is 5103.