What is LCM of 77 and 1313?


How do we define LCM?

LCM, abbreviation for least common multiple, is defined as the smallest number that is the product of two or more numbers 77 and 1313

Properties of LCM

  • The LCM of two or more prime numbers is exactly equal to their product.
  • LCM is associative which means LCM(77, 1313) = LCM(1313, 77).
  • LCM is commutative which means LCM(a, b, c) = LCM(LCM(a, b), c) = LCM(a, LCM(b, c)).
  • LCM is distributive, which means LCM(ab, bc, ad) = d * LCM(x, y, z).
  • The LCM of two given numbers is always greater than the given numbers numbers. Eg- LCM of 77 and 1313 is 101101, where 101101 is greater than 77 and 1313.

Steps to find lcm of 77 and 1313 by Listing Method

Example: Find lcm of 77 and 1313 by Listing Method

  • Multiples of 77: 77, 154, 231, 308, 385, 462, 539, 616, 693, 770, 847, 924, 1001, 1078, 1155, 1232, 1309, 1386, 1463, 1540, 1617, 1694, 1771, 1848, 1925, 2002, 2079, 2156, 2233, 2310, 2387, 2464, 2541, 2618, 2695, 2772, 2849, 2926, 3003, 3080, 3157, 3234, 3311, 3388, 3465, 3542, 3619, 3696, 3773, 3850, 3927, 4004, 4081, 4158, 4235, 4312, 4389, 4466, 4543, 4620, 4697, 4774, 4851, 4928, 5005, 5082, 5159, 5236, 5313, 5390, 5467, 5544, 5621, 5698, 5775, 5852, 5929, 6006, 6083, 6160, 6237, 6314, 6391, 6468, 6545, 6622, 6699, 6776, 6853, 6930, 7007, 7084, 7161, 7238, 7315, 7392, 7469, 7546, 7623, 7700, 7777, 7854, 7931, 8008, 8085, 8162, 8239, 8316, 8393, 8470, 8547, 8624, 8701, 8778, 8855, 8932, 9009, 9086, 9163, 9240, 9317, 9394, 9471, 9548, 9625, 9702, 9779, 9856, 9933, 10010, 10087, 10164, 10241, 10318, 10395, 10472, 10549, 10626, 10703, 10780, 10857, 10934, 11011, 11088, 11165, 11242, 11319, 11396, 11473, 11550, 11627, 11704, 11781, 11858, 11935, 12012, 12089, 12166, 12243, 12320, 12397, 12474, 12551, 12628, 12705, 12782, 12859, 12936, 13013, 13090, 13167, 13244, 13321, 13398, 13475, 13552, 13629, 13706, 13783, 13860, 13937, 14014, 14091, 14168, 14245, 14322, 14399, 14476, 14553, 14630, 14707, 14784, 14861, 14938, 15015, 15092, 15169, 15246, 15323, 15400, 15477, 15554, 15631, 15708, 15785, 15862, 15939, 16016, 16093, 16170, 16247, 16324, 16401, 16478, 16555, 16632, 16709, 16786, 16863, 16940, 17017, 17094, 17171, 17248, 17325, 17402, 17479, 17556, 17633, 17710, 17787, 17864, 17941, 18018, 18095, 18172, 18249, 18326, 18403, 18480, 18557, 18634, 18711, 18788, 18865, 18942, 19019, 19096, 19173, 19250, 19327, 19404, 19481, 19558, 19635, 19712, 19789, 19866, 19943, 20020, 20097, 20174, 20251, 20328, 20405, 20482, 20559, 20636, 20713, 20790, 20867, 20944, 21021, 21098, 21175, 21252, 21329, 21406, 21483, 21560, 21637, 21714, 21791, 21868, 21945, 22022, 22099, 22176, 22253, 22330, 22407, 22484, 22561, 22638, 22715, 22792, 22869, 22946, 23023, 23100, 23177, 23254, 23331, 23408, 23485, 23562, 23639, 23716, 23793, 23870, 23947, 24024, 24101, 24178, 24255, 24332, 24409, 24486, 24563, 24640, 24717, 24794, 24871, 24948, 25025, 25102, 25179, 25256, 25333, 25410, 25487, 25564, 25641, 25718, 25795, 25872, 25949, 26026, 26103, 26180, 26257, 26334, 26411, 26488, 26565, 26642, 26719, 26796, 26873, 26950, 27027, 27104, 27181, 27258, 27335, 27412, 27489, 27566, 27643, 27720, 27797, 27874, 27951, 28028, 28105, 28182, 28259, 28336, 28413, 28490, 28567, 28644, 28721, 28798, 28875, 28952, 29029, 29106, 29183, 29260, 29337, 29414, 29491, 29568, 29645, 29722, 29799, 29876, 29953, 30030, 30107, 30184, 30261, 30338, 30415, 30492, 30569, 30646, 30723, 30800, 30877, 30954, 31031, 31108, 31185, 31262, 31339, 31416, 31493, 31570, 31647, 31724, 31801, 31878, 31955, 32032, 32109, 32186, 32263, 32340, 32417, 32494, 32571, 32648, 32725, 32802, 32879, 32956, 33033, 33110, 33187, 33264, 33341, 33418, 33495, 33572, 33649, 33726, 33803, 33880, 33957, 34034, 34111, 34188, 34265, 34342, 34419, 34496, 34573, 34650, 34727, 34804, 34881, 34958, 35035, 35112, 35189, 35266, 35343, 35420, 35497, 35574, 35651, 35728, 35805, 35882, 35959, 36036, 36113, 36190, 36267, 36344, 36421, 36498, 36575, 36652, 36729, 36806, 36883, 36960, 37037, 37114, 37191, 37268, 37345, 37422, 37499, 37576, 37653, 37730, 37807, 37884, 37961, 38038, 38115, 38192, 38269, 38346, 38423, 38500, 38577, 38654, 38731, 38808, 38885, 38962, 39039, 39116, 39193, 39270, 39347, 39424, 39501, 39578, 39655, 39732, 39809, 39886, 39963, 40040, 40117, 40194, 40271, 40348, 40425, 40502, 40579, 40656, 40733, 40810, 40887, 40964, 41041, 41118, 41195, 41272, 41349, 41426, 41503, 41580, 41657, 41734, 41811, 41888, 41965, 42042, 42119, 42196, 42273, 42350, 42427, 42504, 42581, 42658, 42735, 42812, 42889, 42966, 43043, 43120, 43197, 43274, 43351, 43428, 43505, 43582, 43659, 43736, 43813, 43890, 43967, 44044, 44121, 44198, 44275, 44352, 44429, 44506, 44583, 44660, 44737, 44814, 44891, 44968, 45045, 45122, 45199, 45276, 45353, 45430, 45507, 45584, 45661, 45738, 45815, 45892, 45969, 46046, 46123, 46200, 46277, 46354, 46431, 46508, 46585, 46662, 46739, 46816, 46893, 46970, 47047, 47124, 47201, 47278, 47355, 47432, 47509, 47586, 47663, 47740, 47817, 47894, 47971, 48048, 48125, 48202, 48279, 48356, 48433, 48510, 48587, 48664, 48741, 48818, 48895, 48972, 49049, 49126, 49203, 49280, 49357, 49434, 49511, 49588, 49665, 49742, 49819, 49896, 49973, 50050, 50127, 50204, 50281, 50358, 50435, 50512, 50589, 50666, 50743, 50820, 50897, 50974, 51051, 51128, 51205, 51282, 51359, 51436, 51513, 51590, 51667, 51744, 51821, 51898, 51975, 52052, 52129, 52206, 52283, 52360, 52437, 52514, 52591, 52668, 52745, 52822, 52899, 52976, 53053, 53130, 53207, 53284, 53361, 53438, 53515, 53592, 53669, 53746, 53823, 53900, 53977, 54054, 54131, 54208, 54285, 54362, 54439, 54516, 54593, 54670, 54747, 54824, 54901, 54978, 55055, 55132, 55209, 55286, 55363, 55440, 55517, 55594, 55671, 55748, 55825, 55902, 55979, 56056, 56133, 56210, 56287, 56364, 56441, 56518, 56595, 56672, 56749, 56826, 56903, 56980, 57057, 57134, 57211, 57288, 57365, 57442, 57519, 57596, 57673, 57750, 57827, 57904, 57981, 58058, 58135, 58212, 58289, 58366, 58443, 58520, 58597, 58674, 58751, 58828, 58905, 58982, 59059, 59136, 59213, 59290, 59367, 59444, 59521, 59598, 59675, 59752, 59829, 59906, 59983, 60060, 60137, 60214, 60291, 60368, 60445, 60522, 60599, 60676, 60753, 60830, 60907, 60984, 61061, 61138, 61215, 61292, 61369, 61446, 61523, 61600, 61677, 61754, 61831, 61908, 61985, 62062, 62139, 62216, 62293, 62370, 62447, 62524, 62601, 62678, 62755, 62832, 62909, 62986, 63063, 63140, 63217, 63294, 63371, 63448, 63525, 63602, 63679, 63756, 63833, 63910, 63987, 64064, 64141, 64218, 64295, 64372, 64449, 64526, 64603, 64680, 64757, 64834, 64911, 64988, 65065, 65142, 65219, 65296, 65373, 65450, 65527, 65604, 65681, 65758, 65835, 65912, 65989, 66066, 66143, 66220, 66297, 66374, 66451, 66528, 66605, 66682, 66759, 66836, 66913, 66990, 67067, 67144, 67221, 67298, 67375, 67452, 67529, 67606, 67683, 67760, 67837, 67914, 67991, 68068, 68145, 68222, 68299, 68376, 68453, 68530, 68607, 68684, 68761, 68838, 68915, 68992, 69069, 69146, 69223, 69300, 69377, 69454, 69531, 69608, 69685, 69762, 69839, 69916, 69993, 70070, 70147, 70224, 70301, 70378, 70455, 70532, 70609, 70686, 70763, 70840, 70917, 70994, 71071, 71148, 71225, 71302, 71379, 71456, 71533, 71610, 71687, 71764, 71841, 71918, 71995, 72072, 72149, 72226, 72303, 72380, 72457, 72534, 72611, 72688, 72765, 72842, 72919, 72996, 73073, 73150, 73227, 73304, 73381, 73458, 73535, 73612, 73689, 73766, 73843, 73920, 73997, 74074, 74151, 74228, 74305, 74382, 74459, 74536, 74613, 74690, 74767, 74844, 74921, 74998, 75075, 75152, 75229, 75306, 75383, 75460, 75537, 75614, 75691, 75768, 75845, 75922, 75999, 76076, 76153, 76230, 76307, 76384, 76461, 76538, 76615, 76692, 76769, 76846, 76923, 77000, 77077, 77154, 77231, 77308, 77385, 77462, 77539, 77616, 77693, 77770, 77847, 77924, 78001, 78078, 78155, 78232, 78309, 78386, 78463, 78540, 78617, 78694, 78771, 78848, 78925, 79002, 79079, 79156, 79233, 79310, 79387, 79464, 79541, 79618, 79695, 79772, 79849, 79926, 80003, 80080, 80157, 80234, 80311, 80388, 80465, 80542, 80619, 80696, 80773, 80850, 80927, 81004, 81081, 81158, 81235, 81312, 81389, 81466, 81543, 81620, 81697, 81774, 81851, 81928, 82005, 82082, 82159, 82236, 82313, 82390, 82467, 82544, 82621, 82698, 82775, 82852, 82929, 83006, 83083, 83160, 83237, 83314, 83391, 83468, 83545, 83622, 83699, 83776, 83853, 83930, 84007, 84084, 84161, 84238, 84315, 84392, 84469, 84546, 84623, 84700, 84777, 84854, 84931, 85008, 85085, 85162, 85239, 85316, 85393, 85470, 85547, 85624, 85701, 85778, 85855, 85932, 86009, 86086, 86163, 86240, 86317, 86394, 86471, 86548, 86625, 86702, 86779, 86856, 86933, 87010, 87087, 87164, 87241, 87318, 87395, 87472, 87549, 87626, 87703, 87780, 87857, 87934, 88011, 88088, 88165, 88242, 88319, 88396, 88473, 88550, 88627, 88704, 88781, 88858, 88935, 89012, 89089, 89166, 89243, 89320, 89397, 89474, 89551, 89628, 89705, 89782, 89859, 89936, 90013, 90090, 90167, 90244, 90321, 90398, 90475, 90552, 90629, 90706, 90783, 90860, 90937, 91014, 91091, 91168, 91245, 91322, 91399, 91476, 91553, 91630, 91707, 91784, 91861, 91938, 92015, 92092, 92169, 92246, 92323, 92400, 92477, 92554, 92631, 92708, 92785, 92862, 92939, 93016, 93093, 93170, 93247, 93324, 93401, 93478, 93555, 93632, 93709, 93786, 93863, 93940, 94017, 94094, 94171, 94248, 94325, 94402, 94479, 94556, 94633, 94710, 94787, 94864, 94941, 95018, 95095, 95172, 95249, 95326, 95403, 95480, 95557, 95634, 95711, 95788, 95865, 95942, 96019, 96096, 96173, 96250, 96327, 96404, 96481, 96558, 96635, 96712, 96789, 96866, 96943, 97020, 97097, 97174, 97251, 97328, 97405, 97482, 97559, 97636, 97713, 97790, 97867, 97944, 98021, 98098, 98175, 98252, 98329, 98406, 98483, 98560, 98637, 98714, 98791, 98868, 98945, 99022, 99099, 99176, 99253, 99330, 99407, 99484, 99561, 99638, 99715, 99792, 99869, 99946, 100023, 100100, 100177, 100254, 100331, 100408, 100485, 100562, 100639, 100716, 100793, 100870, 100947, 101024, 101101
  • Multiples of 1313: 1313, 2626, 3939, 5252, 6565, 7878, 9191, 10504, 11817, 13130, 14443, 15756, 17069, 18382, 19695, 21008, 22321, 23634, 24947, 26260, 27573, 28886, 30199, 31512, 32825, 34138, 35451, 36764, 38077, 39390, 40703, 42016, 43329, 44642, 45955, 47268, 48581, 49894, 51207, 52520, 53833, 55146, 56459, 57772, 59085, 60398, 61711, 63024, 64337, 65650, 66963, 68276, 69589, 70902, 72215, 73528, 74841, 76154, 77467, 78780, 80093, 81406, 82719, 84032, 85345, 86658, 87971, 89284, 90597, 91910, 93223, 94536, 95849, 97162, 98475, 99788, 101101

Hence, LCM of 77 and 1313 is 101101.

Steps to find LCM of 77 and 1313 by Common Division Method

Example: Find lcm of 77 and 1313 by Common Division Method

7 77 1313
11 11 1313
13 1 1313
101 1 101
1 1

Hence, LCM of 77 and 1313 is 7 x 11 x 13 x 101 = 101101.

Steps to find lcm of 77 and 1313 by Formula

Example: Find lcm of 77 and 1313 by Formula

  • GCF of 77 and 1313 = 1
  • LCM of 77 and 1313 = (77 x 1313) / 1
  • => 101101 / 1

Hence, LCM of 77 and 1313 is 101101.

Examples

Steve spends 77 dollars every day while George spends 1313 dollars every day. What is the least number of days it will take each person to spend the same amount of money?

To find the least number of days that would be taken to be able to spend the same amount of dollars we need to find the LCM of 77 and 1313.
So, LCM of 77 and 1313 is 101101.

Boxes that are 77 inches tall are being pilled next to boxes that are 1313 inches tall. What is the least height in feet at which the two piles will be the same height?

To find the least height in feet at which the two piles will be at same height we will find LCM of 77 and 1313.
So, LCM of 77 and 1313 is 101101.

Sammy's company prints 77 textbooks at a time. Daniel's company prints textbooks in sets of 1313 at a time. According to a survey done by a committee, both companies printed the same number of textbooks last year. Find the least number of books that each company would have printed.

To find the least number of textbooks that each company could have printed we need to find the LCM of 77 and 1313.
So, LCM of 77 and 1313 is 101101.

Ram and Deepika are running on a circular track. They start at the same time. They take 77 and 1313 minutes respectively to go round once. Find at what time they will run together?

Ram and Deepika are running on a circular track. They take 77 and 1313 minutes respectively to go round once. We need to find out at what time (minimum) they will run together again. For this we need to find the LCM of 77 and 1313.
So, LCM of 77 and 1313 is 101101.

Find the LCM of 77 and 1313 using GCF method.

Greatest common factor or gcf of 77 and 1313 is GCF(77, 1313) x LCM(77, 1313) = (77 x 1313) / GCF(77, 1313) = 101101.

Find the least common multiple of 77 and 1313.

Least common multiple of 77 and 1313 is 101101.

Find the least number which is exactly divisible by 77 and 1313.

Least number which is exactly divisible by 77 and 1313 is 101101.